Learning Goals

At the end of this exercise, you will be able to:
1. Produce clean summaries of data using summarize().
4. Use group_by() in combination with summarize() to produce grouped summaries of data.

Load the tidyverse and janitor

library("tidyverse")
library("janitor")

Load the data

For this lab, we will use the built-in data on mammal sleep patterns. From: V. M. Savage and G. B. West. A quantitative, theoretical framework for understanding mammalian sleep. Proceedings of the National Academy of Sciences, 104 (3):1051-1056, 2007.

msleep <- msleep

summarize()

summarize() will produce summary statistics for a given variable in a data frame. For example, if you are asked to calculate the mean of sleep_total for large and small mammals you could do this using a combination of commands, but it isn’t very efficient or clean. We can do better!

For example, if we define “large” as having a bodywt greater than 200 then we get the following:

large <- msleep %>% 
  filter(bodywt > 200) %>% 
  arrange(desc(bodywt))
large
## # A tibble: 7 × 11
##   name    genus vore  order conservation sleep_total sleep_rem sleep_cycle awake
##   <chr>   <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl> <dbl>
## 1 Africa… Loxo… herbi Prob… vu                   3.3      NA        NA      20.7
## 2 Asian … Elep… herbi Prob… en                   3.9      NA        NA      20.1
## 3 Giraffe Gira… herbi Arti… cd                   1.9       0.4      NA      22.1
## 4 Pilot … Glob… carni Ceta… cd                   2.7       0.1      NA      21.4
## 5 Cow     Bos   herbi Arti… domesticated         4         0.7       0.667  20  
## 6 Horse   Equus herbi Peri… domesticated         2.9       0.6       1      21.1
## 7 Brazil… Tapi… herbi Peri… vu                   4.4       1         0.9    19.6
## # ℹ 2 more variables: brainwt <dbl>, bodywt <dbl>
mean(large$sleep_total)
## [1] 3.3

We can accomplish the same task using the summarize() function.

Large mammals

msleep %>% 
  filter(bodywt>200) %>% 
  summarize(mean_sleep_lg=mean(sleep_total))
## # A tibble: 1 × 1
##   mean_sleep_lg
##           <dbl>
## 1           3.3

Small mammals

msleep %>% 
  filter(bodywt<10)%>% 
  summarize(mean_sleep_sm=mean(sleep_total))
## # A tibble: 1 × 1
##   mean_sleep_sm
##           <dbl>
## 1          12.0

You can also combine functions to make summaries for multiple variables.

msleep %>% 
  filter(bodywt>200) %>% 
  summarize(mean_sleep_lg=mean(sleep_total),
            min_sleep_lg=min(sleep_total),
            max_sleep_lg=max(sleep_total),
            sd_sleep_lg=sd(sleep_total),
            total=n())
## # A tibble: 1 × 5
##   mean_sleep_lg min_sleep_lg max_sleep_lg sd_sleep_lg total
##           <dbl>        <dbl>        <dbl>       <dbl> <int>
## 1           3.3          1.9          4.4       0.870     7

Maybe you want to summarize all of the numeric variables in the data frame. You can use the where() function to select only the numeric variables.

msleep %>% 
  select(where(is.numeric)) %>% 
  summarize_all(mean)
## # A tibble: 1 × 6
##   sleep_total sleep_rem sleep_cycle awake brainwt bodywt
##         <dbl>     <dbl>       <dbl> <dbl>   <dbl>  <dbl>
## 1        10.4        NA          NA  13.6      NA   166.
msleep %>% 
  select(where(is.numeric)) %>% 
  summarize_all(mean, na.rm=TRUE)
## # A tibble: 1 × 6
##   sleep_total sleep_rem sleep_cycle awake brainwt bodywt
##         <dbl>     <dbl>       <dbl> <dbl>   <dbl>  <dbl>
## 1        10.4      1.88       0.440  13.6   0.282   166.

Practice

  1. What is the mean, min, and max bodywt for the taxonomic order Primates? Provide the total number of observations.
msleep %>% 
  filter(order=="Primates") %>% 
  summarize(mean_bodywt=mean(bodywt),
            min_bodywt=min(bodywt),
            max_bodywt=max(bodywt),
            total=n())
## # A tibble: 1 × 4
##   mean_bodywt min_bodywt max_bodywt total
##         <dbl>      <dbl>      <dbl> <int>
## 1        13.9        0.2         62    12

n_distinct() is a handy way of cleanly presenting the number of distinct observations. Notice that there are multiple genera with over 100 in body weight.

msleep %>% 
  filter(bodywt > 100)
## # A tibble: 11 × 11
##    name   genus vore  order conservation sleep_total sleep_rem sleep_cycle awake
##    <chr>  <chr> <chr> <chr> <chr>              <dbl>     <dbl>       <dbl> <dbl>
##  1 Cow    Bos   herbi Arti… domesticated         4         0.7       0.667  20  
##  2 Asian… Elep… herbi Prob… en                   3.9      NA        NA      20.1
##  3 Horse  Equus herbi Peri… domesticated         2.9       0.6       1      21.1
##  4 Donkey Equus herbi Peri… domesticated         3.1       0.4      NA      20.9
##  5 Giraf… Gira… herbi Arti… cd                   1.9       0.4      NA      22.1
##  6 Pilot… Glob… carni Ceta… cd                   2.7       0.1      NA      21.4
##  7 Afric… Loxo… herbi Prob… vu                   3.3      NA        NA      20.7
##  8 Tiger  Pant… carni Carn… en                  15.8      NA        NA       8.2
##  9 Lion   Pant… carni Carn… vu                  13.5      NA        NA      10.5
## 10 Brazi… Tapi… herbi Peri… vu                   4.4       1         0.9    19.6
## 11 Bottl… Turs… carni Ceta… <NA>                 5.2      NA        NA      18.8
## # ℹ 2 more variables: brainwt <dbl>, bodywt <dbl>

Here we show the number of distinct genera over 100 in body weight.

msleep %>% 
  filter(bodywt > 100) %>% 
  summarize(n_genera=n_distinct(genus))
## # A tibble: 1 × 1
##   n_genera
##      <int>
## 1        9
bodywt_sm <- msleep %>% 
  filter(bodywt > 100)
unique(bodywt_sm$genus)
## [1] "Bos"           "Elephas"       "Equus"         "Giraffa"      
## [5] "Globicephalus" "Loxodonta"     "Panthera"      "Tapirus"      
## [9] "Tursiops"
bodywt_sm %>% 
  distinct(genus) %>% 
  pull(genus)
## [1] "Bos"           "Elephas"       "Equus"         "Giraffa"      
## [5] "Globicephalus" "Loxodonta"     "Panthera"      "Tapirus"      
## [9] "Tursiops"

There are many other useful summary statistics, depending on your needs: sd(), min(), max(), median(), sum(), n() (returns the length of a column), first() (returns first value in a column), last() (returns last value in a column) and n_distinct() (number of distinct values in a column).

Practice

  1. How many genera are represented in the msleep data frame?
msleep %>% 
  summarize(n_genera=n_distinct(genus))
## # A tibble: 1 × 1
##   n_genera
##      <int>
## 1       77
  1. What are the min, max, and mean sleep_total for all of the mammals? Be sure to include the total n.
msleep%>% 
  summarize(mean_sleep_total=mean(sleep_total),
            minsleep_total=min(sleep_total),
            max_sleep_total=max(sleep_total),
            total=n())
## # A tibble: 1 × 4
##   mean_sleep_total minsleep_total max_sleep_total total
##              <dbl>          <dbl>           <dbl> <int>
## 1             10.4            1.9            19.9    83

Counts

Although summarize() is helpful, oftentimes we are only interested in counts. The janitor package does a lot with counts, but there are also functions that are part of dplyr that are useful.

For example, if we wanted to count the number of observations for each vore category in the msleep data frame we could do the following:

msleep %>% 
  count(vore)
## # A tibble: 5 × 2
##   vore        n
##   <chr>   <int>
## 1 carni      19
## 2 herbi      32
## 3 insecti     5
## 4 omni       20
## 5 <NA>        7

You can even combine multiple variables to get counts. For example, if we wanted to count the number of observations for each vore category within each order category we could do the following:

msleep %>% 
  count(vore, order)
## # A tibble: 32 × 3
##    vore  order               n
##    <chr> <chr>           <int>
##  1 carni Carnivora          12
##  2 carni Cetacea             3
##  3 carni Cingulata           1
##  4 carni Didelphimorphia     1
##  5 carni Primates            1
##  6 carni Rodentia            1
##  7 herbi Artiodactyla        5
##  8 herbi Diprotodontia       1
##  9 herbi Hyracoidea          2
## 10 herbi Lagomorpha          1
## # ℹ 22 more rows

The tabyl() function from the janitor package is also very useful for producing counts and percentages.

msleep %>% 
  tabyl(vore)
##     vore  n    percent valid_percent
##    carni 19 0.22891566    0.25000000
##    herbi 32 0.38554217    0.42105263
##  insecti  5 0.06024096    0.06578947
##     omni 20 0.24096386    0.26315789
##     <NA>  7 0.08433735            NA

Practice

  1. In the taxonomic order Carnivora, count the number of observations for each conservation status.
msleep %>% 
  filter(order=="Carnivora") %>% 
  count(conservation)
## # A tibble: 6 × 2
##   conservation     n
##   <chr>        <int>
## 1 domesticated     2
## 2 en               1
## 3 lc               2
## 4 nt               1
## 5 vu               3
## 6 <NA>             3
  1. Among herbivores, which taxonomic order is most represented?
msleep %>% 
  filter(vore=="herbi") %>% 
  count(order)
## # A tibble: 9 × 2
##   order              n
##   <chr>          <int>
## 1 Artiodactyla       5
## 2 Diprotodontia      1
## 3 Hyracoidea         2
## 4 Lagomorpha         1
## 5 Perissodactyla     3
## 6 Pilosa             1
## 7 Primates           1
## 8 Proboscidea        2
## 9 Rodentia          16

That’s it! Let’s take a break and then move on to part 2!

–>Home