Instructions

Answer the following questions and complete the exercises in RMarkdown. Please embed all of your code and push your final work to your repository. Your final lab report should be organized, clean, and run free from errors. Remember, you must remove the # for the included code chunks to run. Be sure to add your name to the author header above.

Make sure to use the formatting conventions of RMarkdown to make your report neat and clean!

Load the libraries

library(tidyverse)

For this assignment we are going to work with a data set from the United Nations Food and Agriculture Organization on world fisheries.

Load the data fisheries.csv as a new object titled fisheries.

fisheries <- read_csv("data/fisheries.csv")
## Rows: 376771 Columns: 10
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (6): country, common_name, isscaap_taxonomic_group, asfis_species_number...
## dbl (4): isscaap_group_number, fao_major_fishing_area, year, catch
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
  1. Explore the data. What are the names of the variables, what are the dimensions, are there any NA’s, what are the classes of the variables, etc.? You may use the functions that you prefer.
glimpse(fisheries)
## Rows: 376,771
## Columns: 10
## $ country                 <chr> "Albania", "Albania", "Albania", "Albania", "A…
## $ common_name             <chr> "Angelsharks, sand devils nei", "Angelsharks, …
## $ isscaap_group_number    <dbl> 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38…
## $ isscaap_taxonomic_group <chr> "Sharks, rays, chimaeras", "Sharks, rays, chim…
## $ asfis_species_number    <chr> "10903XXXXX", "10903XXXXX", "10903XXXXX", "109…
## $ asfis_species_name      <chr> "Squatinidae", "Squatinidae", "Squatinidae", "…
## $ fao_major_fishing_area  <dbl> 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37…
## $ measure                 <chr> "Quantity (tonnes)", "Quantity (tonnes)", "Qua…
## $ year                    <dbl> 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002…
## $ catch                   <dbl> NA, 53, 20, 31, 30, 30, 16, 79, 1, 4, 68, 55, …
  1. How many countries are represented in the data? Provide a count and list their names.
fisheries %>% 
  summarize(n_countries = n_distinct(country))
## # A tibble: 1 × 1
##   n_countries
##         <int>
## 1         203
fisheries$country %>% unique()
##   [1] "Albania"                   "Algeria"                  
##   [3] "American Samoa"            "Angola"                   
##   [5] "Anguilla"                  "Antigua and Barbuda"      
##   [7] "Argentina"                 "Aruba"                    
##   [9] "Australia"                 "Bahamas"                  
##  [11] "Bahrain"                   "Bangladesh"               
##  [13] "Barbados"                  "Belgium"                  
##  [15] "Belize"                    "Benin"                    
##  [17] "Bermuda"                   "Bonaire/S.Eustatius/Saba" 
##  [19] "Bosnia and Herzegovina"    "Brazil"                   
##  [21] "British Indian Ocean Ter"  "British Virgin Islands"   
##  [23] "Brunei Darussalam"         "Bulgaria"                 
##  [25] "Cabo Verde"                "Cambodia"                 
##  [27] "Cameroon"                  "Canada"                   
##  [29] "Cayman Islands"            "Channel Islands"          
##  [31] "Chile"                     "China"                    
##  [33] "China, Hong Kong SAR"      "China, Macao SAR"         
##  [35] "Colombia"                  "Comoros"                  
##  [37] "Congo, Dem. Rep. of the"   "Congo, Republic of"       
##  [39] "Cook Islands"              "Costa Rica"               
##  [41] "Croatia"                   "Cuba"                     
##  [43] "Cura\xe7ao"                "Cyprus"                   
##  [45] "C\xf4te d'Ivoire"          "Denmark"                  
##  [47] "Djibouti"                  "Dominica"                 
##  [49] "Dominican Republic"        "Ecuador"                  
##  [51] "Egypt"                     "El Salvador"              
##  [53] "Equatorial Guinea"         "Eritrea"                  
##  [55] "Estonia"                   "Ethiopia"                 
##  [57] "Falkland Is.(Malvinas)"    "Faroe Islands"            
##  [59] "Fiji, Republic of"         "Finland"                  
##  [61] "France"                    "French Guiana"            
##  [63] "French Polynesia"          "French Southern Terr"     
##  [65] "Gabon"                     "Gambia"                   
##  [67] "Georgia"                   "Germany"                  
##  [69] "Ghana"                     "Gibraltar"                
##  [71] "Greece"                    "Greenland"                
##  [73] "Grenada"                   "Guadeloupe"               
##  [75] "Guam"                      "Guatemala"                
##  [77] "Guinea"                    "GuineaBissau"             
##  [79] "Guyana"                    "Haiti"                    
##  [81] "Honduras"                  "Iceland"                  
##  [83] "India"                     "Indonesia"                
##  [85] "Iran (Islamic Rep. of)"    "Iraq"                     
##  [87] "Ireland"                   "Isle of Man"              
##  [89] "Israel"                    "Italy"                    
##  [91] "Jamaica"                   "Japan"                    
##  [93] "Jordan"                    "Kenya"                    
##  [95] "Kiribati"                  "Korea, Dem. People's Rep" 
##  [97] "Korea, Republic of"        "Kuwait"                   
##  [99] "Latvia"                    "Lebanon"                  
## [101] "Liberia"                   "Libya"                    
## [103] "Lithuania"                 "Madagascar"               
## [105] "Malaysia"                  "Maldives"                 
## [107] "Malta"                     "Marshall Islands"         
## [109] "Martinique"                "Mauritania"               
## [111] "Mauritius"                 "Mayotte"                  
## [113] "Mexico"                    "Micronesia, Fed.States of"
## [115] "Monaco"                    "Montenegro"               
## [117] "Montserrat"                "Morocco"                  
## [119] "Mozambique"                "Myanmar"                  
## [121] "Namibia"                   "Nauru"                    
## [123] "Netherlands"               "Netherlands Antilles"     
## [125] "New Caledonia"             "New Zealand"              
## [127] "Nicaragua"                 "Nigeria"                  
## [129] "Niue"                      "Norfolk Island"           
## [131] "Northern Mariana Is."      "Norway"                   
## [133] "Oman"                      "Other nei"                
## [135] "Pakistan"                  "Palau"                    
## [137] "Palestine, Occupied Tr."   "Panama"                   
## [139] "Papua New Guinea"          "Peru"                     
## [141] "Philippines"               "Pitcairn Islands"         
## [143] "Poland"                    "Portugal"                 
## [145] "Puerto Rico"               "Qatar"                    
## [147] "Romania"                   "Russian Federation"       
## [149] "R\xe9union"                "Saint Barth\xe9lemy"      
## [151] "Saint Helena"              "Saint Kitts and Nevis"    
## [153] "Saint Lucia"               "Saint Vincent/Grenadines" 
## [155] "SaintMartin"               "Samoa"                    
## [157] "Sao Tome and Principe"     "Saudi Arabia"             
## [159] "Senegal"                   "Serbia and Montenegro"    
## [161] "Seychelles"                "Sierra Leone"             
## [163] "Singapore"                 "Sint Maarten"             
## [165] "Slovenia"                  "Solomon Islands"          
## [167] "Somalia"                   "South Africa"             
## [169] "Spain"                     "Sri Lanka"                
## [171] "St. Pierre and Miquelon"   "Sudan"                    
## [173] "Sudan (former)"            "Suriname"                 
## [175] "Svalbard and Jan Mayen"    "Sweden"                   
## [177] "Syrian Arab Republic"      "Taiwan Province of China" 
## [179] "Tanzania, United Rep. of"  "Thailand"                 
## [181] "TimorLeste"                "Togo"                     
## [183] "Tokelau"                   "Tonga"                    
## [185] "Trinidad and Tobago"       "Tunisia"                  
## [187] "Turkey"                    "Turks and Caicos Is."     
## [189] "Tuvalu"                    "US Virgin Islands"        
## [191] "Ukraine"                   "Un. Sov. Soc. Rep."       
## [193] "United Arab Emirates"      "United Kingdom"           
## [195] "United States of America"  "Uruguay"                  
## [197] "Vanuatu"                   "Venezuela, Boliv Rep of"  
## [199] "Viet Nam"                  "Wallis and Futuna Is."    
## [201] "Yemen"                     "Yugoslavia SFR"           
## [203] "Zanzibar"
  1. Based on the asfis_species_number, how many different (i.e.) fish species were caught?
fisheries%>% 
  mutate(asfis_species_number=as.factor(asfis_species_number)) %>%
  summarize(n_taxa=n_distinct(asfis_species_number))
## # A tibble: 1 × 1
##   n_taxa
##    <int>
## 1   1551
  1. What is the total catch for each isscaap_taxonomic_group in the data set?
fisheries %>% 
  group_by(isscaap_taxonomic_group) %>% 
  summarize(total_catch=sum(catch, na.rm=T)) %>% 
  arrange(desc(total_catch))
## # A tibble: 30 × 2
##    isscaap_taxonomic_group         total_catch
##    <chr>                                 <dbl>
##  1 Herrings, sardines, anchovies       1898529
##  2 Cods, hakes, haddocks               1218092
##  3 Miscellaneous pelagic fishes        1217644
##  4 Miscellaneous coastal fishes         995248
##  5 Tunas, bonitos, billfishes           978951
##  6 Marine fishes not identified         863949
##  7 Miscellaneous demersal fishes        452445
##  8 Squids, cuttlefishes, octopuses      311928
##  9 Sharks, rays, chimaeras              263569
## 10 Shrimps, prawns                      228203
## # ℹ 20 more rows
  1. Based on the asfis_species_name, what are the top 5 most caught species? (note: “Osteichthyes” is not a species, it refers to unidentified fish. You should filter this one out.).
fisheries %>% 
  filter(asfis_species_name != "Osteichthyes") %>%
  group_by(asfis_species_number, asfis_species_name) %>%
  summarize(total_catch=sum(catch, na.rm=T), .groups='keep') %>% 
  arrange(-total_catch)
## # A tibble: 1,547 × 3
## # Groups:   asfis_species_number, asfis_species_name [1,547]
##    asfis_species_number asfis_species_name      total_catch
##    <chr>                <chr>                         <dbl>
##  1 1210600208           Engraulis ringens            540739
##  2 1480401601           Theragra chalcogramma        473722
##  3 1210500105           Clupea harengus              264304
##  4 1480400202           Gadus morhua                 217930
##  5 1750102501           Katsuwonus pelamis           194923
##  6 1210501303           Sardinops sagax              176094
##  7 1750100201           Scomber japonicus            175444
##  8 1702300405           Trachurus murphyi            152034
##  9 1210501301           Sardinops melanostictus      144774
## 10 1230400201           Mallotus villosus            131239
## # ℹ 1,537 more rows
  1. For the species that was caught the most, which country had the highest catch?
fisheries %>% 
  filter(asfis_species_name == "Engraulis ringens") %>%
  group_by(country) %>% 
  summarize(catch_total=sum(catch, na.rm=T)) %>% 
  arrange(desc(catch_total))
## # A tibble: 3 × 2
##   country catch_total
##   <chr>         <dbl>
## 1 Peru         439717
## 2 Chile        100694
## 3 Ecuador         328
  1. Which country had the largest overall catch between the years 2002-2012?
fisheries%>% 
  filter(year>=2002 & year<=2012) %>%
  group_by(country) %>% 
  summarize(catch_total=sum(catch, na.rm=T)) %>% 
  arrange(desc(catch_total))
## # A tibble: 200 × 2
##    country                  catch_total
##    <chr>                          <dbl>
##  1 China                         269238
##  2 United States of America      167309
##  3 Russian Federation            112028
##  4 Indonesia                     104362
##  5 Japan                         104152
##  6 Chile                          97030
##  7 Spain                          92286
##  8 Peru                           86482
##  9 Portugal                       69778
## 10 India                          69681
## # ℹ 190 more rows
  1. Which country had the largest catch in a single year? What year was it?
fisheries %>% 
  group_by(country, year) %>% 
  summarize(catch_total=sum(catch, na.rm=T), .groups = 'keep') %>% 
  arrange(desc(catch_total))
## # A tibble: 11,583 × 3
## # Groups:   country, year [11,583]
##    country  year catch_total
##    <chr>   <dbl>       <dbl>
##  1 Peru     1970       77000
##  2 Peru     1971       76800
##  3 Peru     1968       62700
##  4 China    2001       39327
##  5 Japan    1972       30167
##  6 Japan    1988       29701
##  7 China    2002       28967
##  8 China    2010       27851
##  9 Japan    1976       27825
## 10 China    1998       27593
## # ℹ 11,573 more rows
  1. Fishing practices for sharks, rays, chimaeras and other cartilaginous fish (group 38) are of particular concern due to their conservation status. Make a new dataframe sharks that only contains data on this group.
sharks <- fisheries %>% 
  filter(isscaap_taxonomic_group == "Sharks, rays, chimaeras")
  1. Using the sharks dataframe, use mutate() to create a new column called fishing_pressure that is based on the total catch. If the total catch is greater than 75, the fishing pressure is considered “high”, otherwise it is considered “moderate”.
sharks <- sharks %>% 
  mutate(fishing_pressure=ifelse(catch>75, "high", "moderate"))
  1. For sharks, how does the average catch differ between high and moderate fishing pressure?
sharks %>% 
  filter(catch>0 | catch!="NA") %>% 
  group_by(fishing_pressure) %>%
  summarize(avg_catch=mean(catch, na.rm=T))
## # A tibble: 2 × 2
##   fishing_pressure avg_catch
##   <chr>                <dbl>
## 1 high                  86.6
## 2 moderate              14.3
  1. Perform one analysis of your choice on the fisheries dataframe that includes a minimum of three lines of code and two functions. Write a seentence or two that explains the intent of your code.

Push your final code to GitHub!

Please be sure that you check the keep md file in the knit preferences.