Answer the following questions and/or complete the exercises in
RMarkdown. Please embed all of your code and push the final work to your
repository. Your report should be organized, clean, and run free from
errors. Remember, you must remove the #
for any included
code chunks to run.
library(tidyverse)
For this assignment, we are going to use built-in data on mammal
sleep patterns mleep
. The data are taken from: V. M. Savage
and G. B. West. A quantitative, theoretical framework for understanding
mammalian sleep. Proceedings of the National Academy of Sciences, 104
(3):1051-1056, 2007.
Since the data are built-in, they do not need to be stored as a separate data frame in order to use them.
1. Learn about the data and variables by using the help function in R.
?msleep
2. What are the names of the variables in msleep?
names(msleep)
## [1] "name" "genus" "vore" "order" "conservation"
## [6] "sleep_total" "sleep_rem" "sleep_cycle" "awake" "brainwt"
## [11] "bodywt"
3. Use one of the summary functions you have learned to get an idea of the structure of the data.
glimpse(msleep)
## Rows: 83
## Columns: 11
## $ name <chr> "Cheetah", "Owl monkey", "Mountain beaver", "Greater shor…
## $ genus <chr> "Acinonyx", "Aotus", "Aplodontia", "Blarina", "Bos", "Bra…
## $ vore <chr> "carni", "omni", "herbi", "omni", "herbi", "herbi", "carn…
## $ order <chr> "Carnivora", "Primates", "Rodentia", "Soricomorpha", "Art…
## $ conservation <chr> "lc", NA, "nt", "lc", "domesticated", NA, "vu", NA, "dome…
## $ sleep_total <dbl> 12.1, 17.0, 14.4, 14.9, 4.0, 14.4, 8.7, 7.0, 10.1, 3.0, 5…
## $ sleep_rem <dbl> NA, 1.8, 2.4, 2.3, 0.7, 2.2, 1.4, NA, 2.9, NA, 0.6, 0.8, …
## $ sleep_cycle <dbl> NA, NA, NA, 0.1333333, 0.6666667, 0.7666667, 0.3833333, N…
## $ awake <dbl> 11.9, 7.0, 9.6, 9.1, 20.0, 9.6, 15.3, 17.0, 13.9, 21.0, 1…
## $ brainwt <dbl> NA, 0.01550, NA, 0.00029, 0.42300, NA, NA, NA, 0.07000, 0…
## $ bodywt <dbl> 50.000, 0.480, 1.350, 0.019, 600.000, 3.850, 20.490, 0.04…
summary(msleep)
## name genus vore order
## Length:83 Length:83 Length:83 Length:83
## Class :character Class :character Class :character Class :character
## Mode :character Mode :character Mode :character Mode :character
##
##
##
##
## conservation sleep_total sleep_rem sleep_cycle
## Length:83 Min. : 1.90 Min. :0.100 Min. :0.1167
## Class :character 1st Qu.: 7.85 1st Qu.:0.900 1st Qu.:0.1833
## Mode :character Median :10.10 Median :1.500 Median :0.3333
## Mean :10.43 Mean :1.875 Mean :0.4396
## 3rd Qu.:13.75 3rd Qu.:2.400 3rd Qu.:0.5792
## Max. :19.90 Max. :6.600 Max. :1.5000
## NA's :22 NA's :51
## awake brainwt bodywt
## Min. : 4.10 Min. :0.00014 Min. : 0.005
## 1st Qu.:10.25 1st Qu.:0.00290 1st Qu.: 0.174
## Median :13.90 Median :0.01240 Median : 1.670
## Mean :13.57 Mean :0.28158 Mean : 166.136
## 3rd Qu.:16.15 3rd Qu.:0.12550 3rd Qu.: 41.750
## Max. :22.10 Max. :5.71200 Max. :6654.000
## NA's :27
4. The variable conservation
categorizes the
conservation status of the mammals in the data. How many mammals are
endangered?
table(msleep$conservation)
##
## cd domesticated en lc nt vu
## 2 10 4 27 4 7
5. Use filter
to pull out the endangered
mammals. Store this as a new object called
endangered
.
endangered <- filter(msleep, conservation == "en")
6. The variable vore
categorizes the feeding
strategy of the mammals in the data. How many mammals are in each
category of vore
?
table(msleep$vore)
##
## carni herbi insecti omni
## 19 32 5 20
7. Use filter
to find the insectivore(s) with
endangered status.
filter(endangered, vore == "insecti")
## # A tibble: 1 × 11
## name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Giant … Prio… inse… Cing… en 18.1 6.1 NA 5.9
## # ℹ 2 more variables: brainwt <dbl>, bodywt <dbl>
8. We are interested in two groups; small and large mammals. Let’s define small as less than or equal to 1kg body weight and large as greater than or equal to 200kg body weight. Make two new dataframes (large and small) based on these parameters.
small <- filter(msleep, bodywt <= 1)
large <- filter(msleep, bodywt >= 200)
9. Do large or small animals sleep longer on average?
mean(small$sleep_total)
## [1] 12.65833
mean(large$sleep_total)
## [1] 3.3
10. Which animal sleeps the least among the entire dataframe?
filter(msleep, sleep_total == min(sleep_total))
## # A tibble: 1 × 11
## name genus vore order conservation sleep_total sleep_rem sleep_cycle awake
## <chr> <chr> <chr> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
## 1 Giraffe Gira… herbi Arti… cd 1.9 0.4 NA 22.1
## # ℹ 2 more variables: brainwt <dbl>, bodywt <dbl>
Please knit your work as a .pdf or .html file and upload to Canvas. Homework is due before the start of the next lab. No late work is accepted. Make sure to use the formatting conventions of RMarkdown to make your report neat and clean!