Answer the following questions and complete the exercises in
RMarkdown. Please embed all of your code and push your final work to
your repository. Your final lab report should be organized, clean, and
run free from errors. Remember, you must remove the #
for
the included code chunks to run. Be sure to add your name to the author
header above. For any included plots, make sure they are clearly
labeled. You are free to use any plot type that you feel best
communicates the results of your analysis.
Make sure to use the formatting conventions of RMarkdown to make your report neat and clean!
library(tidyverse)
library(janitor)
library(ggmap)
We will use two separate data sets for this homework.
The first data set represent sightings of grizzly bears (Ursos arctos) in Alaska.
The second data set is from Brandell, Ellen E (2021), Serological dataset and R code for: Patterns and processes of pathogen exposure in gray wolves across North America, Dryad, Dataset.
grizzly
data and evaluate its structure.grizzly <- read_csv("data/bear-sightings.csv")
## Rows: 494 Columns: 3
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## dbl (3): bear.id, longitude, latitude
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
summary(grizzly)
## bear.id longitude latitude
## Min. : 7 Min. :-166.2 Min. :55.02
## 1st Qu.:2569 1st Qu.:-154.2 1st Qu.:58.13
## Median :4822 Median :-151.0 Median :60.97
## Mean :4935 Mean :-149.1 Mean :61.41
## 3rd Qu.:7387 3rd Qu.:-145.6 3rd Qu.:64.13
## Max. :9996 Max. :-131.3 Max. :70.37
lat <- c(55.02, 70.37)
long <- c(-131.3, -166.2)
bbox <- make_bbox(long, lat, f = 0.05)
stadiamaps
in a
stamen_terrain
projection and display the map. Hint: use
zoom=5.#register_stadiamaps("Your API Key", write = FALSE)
map1 <- get_stadiamap(bbox, maptype = "stamen_terrain", zoom=5)
## ℹ © Stadia Maps © Stamen Design © OpenMapTiles © OpenStreetMap contributors.
ggmap(map1)
ggmap(map1) +
geom_point(data = grizzly, aes(longitude, latitude), size=0.8) +
labs(x = "Longitude", y = "Latitude", title = "Ursos arctos")
Let’s switch to the wolves data. Brandell, Ellen E (2021), Serological dataset and R code for: Patterns and processes of pathogen exposure in gray wolves across North America, Dryad, Dataset.
wolves <- read_csv("data/wolves_data/wolves_dataset.csv")
## Rows: 1986 Columns: 23
## ── Column specification ────────────────────────────────────────────────────────
## Delimiter: ","
## chr (4): pop, age.cat, sex, color
## dbl (19): year, lat, long, habitat, human, pop.density, pack.size, standard....
##
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
glimpse(wolves)
## Rows: 1,986
## Columns: 23
## $ pop <chr> "AK.PEN", "AK.PEN", "AK.PEN", "AK.PEN", "AK.PEN", "…
## $ year <dbl> 2006, 2006, 2006, 2006, 2006, 2006, 2006, 2006, 200…
## $ age.cat <chr> "S", "S", "A", "S", "A", "A", "A", "P", "S", "P", "…
## $ sex <chr> "F", "M", "F", "M", "M", "M", "F", "M", "F", "M", "…
## $ color <chr> "G", "G", "G", "B", "B", "G", "G", "G", "G", "G", "…
## $ lat <dbl> 57.03983, 57.03983, 57.03983, 57.03983, 57.03983, 5…
## $ long <dbl> -157.8427, -157.8427, -157.8427, -157.8427, -157.84…
## $ habitat <dbl> 254.08, 254.08, 254.08, 254.08, 254.08, 254.08, 254…
## $ human <dbl> 10.42, 10.42, 10.42, 10.42, 10.42, 10.42, 10.42, 10…
## $ pop.density <dbl> 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, …
## $ pack.size <dbl> 8.78, 8.78, 8.78, 8.78, 8.78, 8.78, 8.78, 8.78, 8.7…
## $ standard.habitat <dbl> -1.6339, -1.6339, -1.6339, -1.6339, -1.6339, -1.633…
## $ standard.human <dbl> -0.9784, -0.9784, -0.9784, -0.9784, -0.9784, -0.978…
## $ standard.pop <dbl> -0.6827, -0.6827, -0.6827, -0.6827, -0.6827, -0.682…
## $ standard.packsize <dbl> 1.3157, 1.3157, 1.3157, 1.3157, 1.3157, 1.3157, 1.3…
## $ standard.latitude <dbl> 0.7214, 0.7214, 0.7214, 0.7214, 0.7214, 0.7214, 0.7…
## $ standard.longitude <dbl> -2.1441, -2.1441, -2.1441, -2.1441, -2.1441, -2.144…
## $ cav.binary <dbl> 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, …
## $ cdv.binary <dbl> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, …
## $ cpv.binary <dbl> 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, …
## $ chv.binary <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, …
## $ neo.binary <dbl> NA, NA, NA, 0, 0, NA, NA, 1, 0, 1, NA, 0, NA, NA, N…
## $ toxo.binary <dbl> NA, NA, NA, 1, 0, NA, NA, 1, 0, 0, NA, 0, NA, NA, N…
wolves %>% count(pop)
## # A tibble: 17 × 2
## pop n
## <chr> <int>
## 1 AK.PEN 100
## 2 BAN.JAS 96
## 3 BC 145
## 4 DENALI 154
## 5 ELLES 11
## 6 GTNP 60
## 7 INT.AK 35
## 8 MEXICAN 181
## 9 MI 102
## 10 MT 351
## 11 N.NWT 67
## 12 ONT 60
## 13 SE.AK 10
## 14 SNF 92
## 15 SS.NWT 34
## 16 YNP 383
## 17 YUCH 105
us_wolves <-
wolves %>%
filter(pop %in% c("GTNP", "MEXICAN", "MI", "MT", "SNF", "YNP"))
us_wolves %>%
select(lat, long) %>%
summary()
## lat long
## Min. :33.89 Min. :-110.99
## 1st Qu.:44.60 1st Qu.:-110.99
## Median :44.60 Median :-110.55
## Mean :43.95 Mean :-106.91
## 3rd Qu.:46.83 3rd Qu.:-109.17
## Max. :47.75 Max. : -86.82
lat <- c(33.69, 47.75)
long <- c(-110.99, -86.82)
bbox2 <- make_bbox(long, lat, f = 0.05)
stadiamaps
in a
stamen_terrain
projection and display the map. Hint: use
zoom=6map2 <- get_stadiamap(bbox2, maptype = "stamen_terrain", zoom=6)
## ℹ © Stadia Maps © Stamen Design © OpenMapTiles © OpenStreetMap contributors.
ggmap(map2)
ggmap(map2) +
geom_point(us_wolves, mapping=aes(x=long, y=lat), size=2)+
labs(x = "Longitude", y = "Latitude", title = "Wolves in the Lower 48")
fill
and color
by population.ggmap(map2) +
geom_point(us_wolves, mapping=aes(x=long, y=lat, fill=pop, color=pop), size=3)+
labs(x = "Longitude", y = "Latitude", title = "Wolves in the Lower 48")
Please be sure that you check the keep md
file in the
knit preferences.